

- 1. Calculate the molarity of a solution made by dissolving 23.4g of sodium sulfate in enough water to form 125ml of solution?
 - a. 2.62M
 - b. 1.32M
 - c. 4.24M
 - d. 0.18M
 - e. 1.87M
- 2. The average adult human male has a total blood volume of 5.0L. If the concentration of sodium ion in this average individual is 0.135M, What is the mass of sodium ion circulating in the blood?
 - a. 25g
 - b. 22.9g
 - c. 15.5g
 - d. 30g
 - e. 7.5g
- 3. What mass of lithium nitrate would have to be dissolved in 30.0 g of water in order to make an 18.0% solution?
 - a. 12.4g
 - b. 2.45g
 - c. 5.86g
 - d. 6.59g
 - e. 9.73g
- 4. What is the molarity of a solution that contains 390.0 g of acetic acid, CH3COOH, dissolved in enough acetone to make 1000.0 mL of solution?
 - a. 8.73g
 - b. 2.34g
 - c. 6.49g
 - d. 1.23g
 - e. 5.23g
- 5. What mass of ammonium chloride is dissolved in 300. mL of a 0.875 M solution?
 - a. 14.0g
 - b. 28.0g
 - c. 7.0g
 - d. 3.5g
 - e. 12.0g

- 6. Describe what you would do to prepare 100.0 g of a 3.5% solution of ammonium sulfate in water.
 - a. $0.035g (NH_4)_2SO_4 \text{ in } 100g H_2O$
 - b. $3.5g (NH_4)_2SO_4 \text{ in } 100g H_2O$
 - c. $3.5g (NH_4)_2SO_4 \text{ in } 1g H_2O$
 - d. $3.5g (NH_4)_2SO_4 \text{ in } 96.5ml H_2O$
 - e. $0.35g (NH_4)_2SO_4 in 100g H_2O$
- 7. What mass of barium nitrate is dissolved in 21.29 mL of a 3.38 M solution?
 - a. 261.37g
 - b. 25.34g
 - c. 18.8g
 - d. 130.5g
 - e. 15.34g

1	В
2	С
3	D
4	С
5	А
6	D
7	С

- 1. In a KCl Solution, water is the _____, and Potassium Chloride is the _____.
 - A) Solute, Solution
 - B) Solute, Solvent
 - C) Solvent, Solute
 - D) Solvent, Solution
 - E) Solution, Solute
- 2. An oven-cleaning solution is 40.0% (by mass) NaOH. If one jar of this product contains 465 g of solution, how much NaOH does it contain?
 - A) $1.16 \times 10^3 \text{ g}$
 - B) 11.6 g
 - C) 186 g
 - D) 18.6 g
 - E) none of these
- 3. A 118.2-g sample of nitric acid solution that is 70.0% HNO₃ (by mass) contains
 - A) 82.7 mol HNO₃
 - B) 1.31 mol HNO₃
 - C) 1.88 mol HNO₃
 - D) $5.21 \times 10^3 \text{ mol HNO}_3$
 - E) none of these
- 4. You have two solutions of sodium chloride. One is a 2.00 *M* solution, the other is a 4.00 *M* solution. You have much more of the 4.00 *M* solution, and you add the solutions together. Which of the following could be the concentration of the final solution?
 - A) 2.60 M
 - B) 3.00 *M*
 - C) 3.80 M
 - D) 6.00 M
 - E) 7.20 *M*

Answer Key	4. C
1. C	5. B
2. C	6. D
3. B	7. D

- 5. A 60.7-g sample of SrCl₂ is dissolved in 112.5 mL of solution. Calculate the molarity of this solution.
 - A) 0.383 *M*
 - B) 3.40 *M*
 - C) 0.0431 *M*
 - D) 4.72 *M*
 - E) none of these
- 6. What volume of 12.0 *M* nitric acid is required to prepare 6.67 L of 0.100 *M* nitric acid?
 - A) 0.180 L
 - B) 18.0 L
 - C) 0.667 L
 - D) 0.0556 L
 - E) 1.80 L
- What volume of 13.1 *M* H₂SO₄ is required to prepare 12.0 L of 0.156 *M* sulfuric acid? (Ignore significant figures for this problem.)
 - A) 170 mL
 - B) 2.04 L
 - C) 84 mL
 - D) 143 mL
 - E) 1.01 L
- 8. Determine the molarity of a solution containing 6.92 g BaCl₂ in 750.0 mL of solution.
 - A) $3.32 \times 10^{-2} \,\text{M}$
 - B) $2.49 \times 10^{-2} \,\mathrm{M}$
 - C) $9.23 \times 10^{-3} M$
 - D) $4.43 \times 10^{-2} \,\mathrm{M}$
 - E) 9.23 M
- 9. What is the molarity of a HNO₃ solution prepared by adding 164.8 mL of water to 350.0 mL of 12.3 M HNO₃?
 - A) 26.1 M
 - B) 6.33 M
 - C) 8.36 M
 - D) 2.22 M
 - E) 2.03 M

8.	D
9.	С

1. Tabulated below are initial rate data for the reaction $2Fe(CN)_6{}^{3-} + 2I^- \rightarrow 2Fe(CN)_6{}^{4-} + I_2$

Initial

Run	$[Fe(CN)_6^{3-}]_0$	$[I^{-}]_{0}$	$[Fe(CN)_6^{4-}]_0$	$[I_2]_0$	Rate (M/s)
1	0.01	0.01	0.01	0.01	1×10^{-5}
2	0.01	0.02	0.01	0.01	2×10^{-5}
3	0.02	0.02	0.01	0.01	8×10^{-5}
4	0.02	0.02	0.02	0.01	8×10^{-5}
5	0.02	0.02	0.02	0.02	8×10^{-5}

The experimental rate law is:

A)
$$\frac{\Delta[I_2]}{\Delta t} = k[Fe(CN)_6^{3-}]^2[I^-]^2[Fe(CN)_6^{4-}]^2[I_2]$$
B)
$$\frac{\Delta[I_2]}{\Delta t} = k[Fe(CN)_6^{3-}]^2[I^-][Fe(CN)_6^{4-}][I_2]$$
C)
$$\frac{\Delta[I_2]}{\Delta t} = k[Fe(CN)_6^{3-}]^2[I^-]$$
D)
$$\frac{\Delta[I_2]}{\Delta t} = k[Fe(CN)_6^{3-}][I^-]^2$$
E)
$$\frac{\Delta[I_2]}{\Delta t} = k[Fe(CN)_6^{3-}][I^-] [Fe(CN)_6^{4-}]$$

- 2. $4NH_3 + 7O_2 \rightarrow 4NO_2 + 6H_2O$ At a certain instant the initial rate of disappearance of the oxygen gas is X. What is the value of the appearance of water at the same instant?
 - A) 1.2 X
 - B) 1.1 X
 - C) 0.86 X
 - D) 0.58 X
 - E) cannot be determined from the data

3. $CaCl_2(s) + 2H_2O(g) \rightleftharpoons CaCl_2 \cdot 2H_2O(s)$ The

equilibrium constant for the reaction as written is

(A)

$$K = \frac{[CaCl_2 \cdot 2H_2O]}{[CaCl_2][H_2O]^2}$$
(B)

$$K = \frac{1}{[H_2O]^2}$$
(C)

$$K = \frac{1}{2[H_2O]}$$
(D)

$$K = [H_2O]^2$$

$$K = \frac{[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]}{[\text{H}_2\text{O}]^2}$$

4. $H_2(g) + I_2(s) \rightleftharpoons 2HI(g)$ The proper K_{eq} expression is: A) $[H_2][I_2]$

$$\begin{array}{rcl}
 & \underline{[H_2][I_2]} \\
 & \underline{[HI]} \\
 & \underline{IH} \\
 &$$

A) 0.39 moles/liter

 $[H_2]$

- B) 0.65 moles/liter
- C) 0.82 moles/liter
- D) 7.5 moles/liter
- E) none of these
- 6. Equilibrium is reached in chemical reactions when:
 - A) the rates of the forward and reverse rxns become equal.
 - B) the []s of reactants and products become equal.
 - C) the temperature shows a sharp rise.
 - D) all chemical reactions stop.
 - E) the forward reaction stops.
- 7. Determine the equilibrium constant for the system

 N_2O_4 **≑** 2NO₂ at 25°C. The concentrations are

shown here: $[N_2O_4] = 2.72 \times 10^{-2} \text{ M}$, $[NO_2] = 1.41 \times 10^{-2} \text{ M}$.

- A) 0.518
- B) 1.93
- C) 1.37×10^2
- D) 0.269
- E) 7.31×10^{-3}

8. The average value for the rate constant k (without units) is $\frac{1}{2}$

$H_2O_2 + 3I^- + 2H^+ \rightarrow I_3^- + 2H_2O$					
	$[H_2O_2]$	[I ⁻]	$[H^+]$	rate	
Ι	0.100 M	$5.00\times10^{\text{-4}}M$	$1.00\times10^{2}M$	0.137 M/sec	
II.	0.100 M	$1.00 \times 10^{-3} \mathrm{M}$	$1.00\times10^{2}\text{M}$	0.268 M/sec	
III.	0.200 M	$1.00 \times 10^{-3} \mathrm{M}$	$1.00\times10^{2}\text{M}$	0.542 M/sec	
IV.	0.400 M	$1.00 \times 10^{-3} \mathrm{M}$	$2.00 \times 10^{-2} \mathrm{M}$	1.084 M/sec	

- A) 2710
- B) 2.74×10^4
- C) 137
- D) 108
- E) none of these
- 9. Apply the law of mass action to determine the equilibrium expression for

$2NO_2Cl(aq) \rightleftharpoons 2NO_2(aq) + Cl_2(aq)$

- A) $2[NO_2][Cl_2]/2[NO_2Cl]$
- B) 2[NO₂Cl]/2[NO₂][Cl₂]
- C) $[NO_2Cl]^2/[NO_2]^2[Cl_2]$
- D) $[NO_2]^2[Cl_2]/[NO_2Cl]^2$
- E) $[NO_2Cl]^2[NO_2]^2[Cl_2]$

Use the following to answer questions 10-12:

Consider the reaction $2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$ at some equilibrium position. Using the following choices, indicate what will happen if the changes below are made.

a. shifts to the leftb. shifts to the rightc. no change

- 10. Additional $H_2O(g)$ is injected into the reaction vessel.
- 11. Some $H_2(g)$ is removed from the reaction vessel.
- 12. Some He(g) is injected into the reaction vessel.

Use the following to answer questions 13-14: The following questions refer to the reaction shown below:

				Initial Rate of
		Initial [A]	Initial [B]	Disappearance of A
Experim	ent	(mol/L)	(mol/L)	$(mol/L \cdot s)$
1		0.16	0.15	0.08
2		0.16	0.30	0.30
3		0.08	0.30	0.08

13. What is the overall order of this reaction?

A)	4

- B) 3
- C) 2 D) 1
- D) 1 E) 0
- E) U

14. What is the rate law for this reaction?

- A) Rate = k[A][B]
- B) Rate = $k[A]^2[B]$
- C) Rate = $k[A][B]^2$
- D) Rate = $k[A]^2[B]^2$
- E) Rate = k[B]

Use the following to answer questions 15-16: The reaction $H_2SeO_3(aq) \ 6I^-(aq) + 4H^+(aq) \rightarrow 2I_3^-(aq) + 3H_2O(l) + Se(s)$ was studied at 0°C by the method of initial rates:

[H2SeO3]0	[H ⁺]0	[I -]0	Rate (mol/L s)
1.0×10^{-4}	2.0×10^{-2}	$2.0 imes 10^{-2}$	1.66×10^{-7}
2.0×10^{-4}	$2.0 imes 10^{-2}$	$2.0 imes 10^{-2}$	3.33×10^{-7}
3.0×10^{-4}	$2.0 imes 10^{-2}$	$2.0 imes 10^{-2}$	4.99×10^{-7}
1.0×10^{-4}	4.0×10^{-2}	$2.0 imes 10^{-2}$	6.66×10^{-7}
1.0×10^{-4}	1.0×10^{-2}	2.0×10^{-2}	0.42×10^{-7}
1.0×10^{-4}	$2.0 imes 10^{-2}$	$4.0 imes 10^{-2}$	13.4×10^{-7}
1.0×10^{-4}	$4.0 imes 10^{-2}$	$4.0 imes 10^{-2}$	$3.36 imes 10^{-7}$

15. The numerical value of the rate constant is

- A) 5.2×10^5
- B) 2.1×10^2
- C) 4.2
- D) 1.9×10^{-6}
- E) none of these
- 16. The rate law is
 - A) Rate = $k[H_2SeO_3][H^+][I^-]$
 - B) Rate = $k[H_2SeO_3][H^+]^2[I^-]$
 - C) Rate = $k[H_2SeO_3][H^+][I^-]^2$
 - D) Rate = $k[H_2SeO_3]^2[H^+][I^-]$
 - E) Rate = $k[H_2SeO_3][H^+]^2[I^-]^3$
- 17. What is the rate of reaction for hydrogen ion in the following reaction as it relates to the rate of reaction of dichromate ions ? $2CrO_4^{2-}(aq) + 2H^+(aq) -> Cr_2O_7^{2-}(aq) + H_2O(l)$

A)
$$-\frac{\Delta \left[H^{+} \right]}{\Delta t}$$
B)
$$-\frac{2\Delta \left[H^{+} \right]}{\Delta t}$$
C)
$$\frac{2\Delta \left[H^{+} \right]}{\Delta t}$$
D)
$$-\frac{\Delta \left[H^{+} \right]}{2\Delta t}$$
E)
$$\frac{\Delta \left[H^{+} \right]}{2\Delta t}$$

- 18. $F_2(g) \rightleftharpoons 2F(g)$ at a particular temperature, the concentrations at equilibrium were observed to be $[F_2] = 3.0 \times 10^{-2}$ mol/L and $[F] = 2.0 \times 10^{-4}$ mol/L. Calculate the value of the equilibrium constant from these data
 - A) 6.0×10^{-2}
 - B) 1.5
 - C) 7.5×10^5
 - D) 1.3×10^{-6}
 - E) none of these

19. $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$

at a certain temperature, the equilibrium concentrations were found to be $[NO_2] = 5.7 \times 10^{-3} M$, $[O_2] = 1.0 \times 10^{-2} M$, and $[NO] = 2.0 \times 10^{-3} M$. Calculate the value of the equilibrium constant from these data

- A) 8.1×10^2
- B) 14.2×10^4
- C) 2.8×10^2
- D) 1.2×10^{-3}
- E) none of these

Use the following to answer question 20: Consider the following data concerning the equation:

$H_2O_2 + 3I^{\scriptscriptstyle -} + 2H^{\scriptscriptstyle +} \twoheadrightarrow I_3^{\scriptscriptstyle -} + 2H_2O$

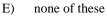
	$[H_2O_2]$	[I ⁻]	$[\mathrm{H}^+]$	rate
Ι	0.100 M	5.00×10^{-4} M	$11.00 \times 10^{-2} \mathrm{M}$	0.137 M/sec
II.	0.100 M	$1.00 \times 10^{-3} \mathrm{M}$	$11.00 \times 10^{-2} \mathrm{M}$	0.268 M/sec
III.	0.200 M	$1.00 \times 10^{-3} \mathrm{M}$	$11.00 \times 10^{-2} \mathrm{M}$	0.542 M/sec
IV.	0.400 M	$1.00 \times 10^{-3} \mathrm{M}$	$12.00 \times 10^{-2} \mathrm{M}$	1.084 M/sec

- 20. The rate law for this reaction is
 - A) rate = $k[H_2O_2][I^-][H^+]$
 - B) rate = $k[H_2O_2]^2[I^-]^2[H^+]^2$
 - C) rate = $k[I^-][H^+]$
 - $D) \quad rate = k[H_2O_2][H^+]$
 - E) rate = $k[H_2O_2][I^-]$

21. $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

What would happen to the system if the total pressure were increased by adding $CO_2(g)$?

- A) Nothing would happen.
- B) More $CO_2(g)$ would be produced.
- C) The amount of CaO would increase.
- D) The amount of CaCO₃ would increase.
- E) Equilibrium would shift to the right.
- 22. Write the equilibrium expression for the following reaction: $S(s) + O_2(g) SO_2(g)$


A)

$$K = \frac{[SO_2]}{[O_2]}$$
B) [O]

$$K = \frac{[O_2]}{[SO_2]^2}$$

C)
$$K = \frac{[SO_2]}{[O_2]^2}$$

D)
$$K = \frac{[SO_2]^2}{[O_2]}$$

- 23. The average rate of disappearance of ozone in the reaction $2O_3(g) \rightarrow 3O_2(g)$ is found to be 8.29 × 10^{-3} atm over a certain interval of time. What is the rate of appearance of O₂ during this interval?
 - A) 12.4×10^{-3} atm/s
 - B) 8.29×10^{-3} atm/s
 - C) 5.53×10^{-3} atm/s
 - D) 285×10^{-3} atm/s
 - E) 22.9×10^{-3} atm/s
- 24. The rate law for a particular reaction is rate = $k[A][B]^2$. If the initial concentration of B is increased from 0.1 M to 0.3 M, the initial rate will increase by which of the following factors?
 - A) 2
 - B) 6
 - C) 12
 - D) 3
 - E) 9
- 25. Consider a system of four gases. The equilibrium concentration of each product is 1.8 *M*. The equilibrium concentrations of the reactants are equal. The equilibrium is shown here:

$$A + B \rightleftharpoons C + D$$
 $K = 2.6$

What is the equilibrium concentration of gas A?

- A) 1.2 *M*
- B) 8.4 M
- C) 4.7 *M*
- D) 1.1 *M*
- E) 0.90 *M*

Use the following to answer questions 26-27:

Given the equation $A(g) \rightleftharpoons B(g) + 2C(g)$. At a particular temperature, $K = 1.4 \times 10^5$.

- 26. If you mixed 1.2 mol B, 0.050 mol C, and 0.003 mol A in a 1-L container, in which direction would the reaction initially proceed?
 - A) to the left
 - B) to the right
 - C) The mixture is in the equilibrium state.
 - D) cannot tell from the information given
- 27. Raising the pressure by decreasing the volume of the container
 - A) will cause [A] to increase
 - B) will cause [B] to increase
 - C) will have no effect
 - D) cannot be determined
 - E) none of the above

28. The correct equilibrium expression for the reaction of sulfur dioxide gas with oxygen gas to produce sulfur trioxide gas is

A)
$$\frac{[SO_3]}{[SO_2][O_2]}$$

B)
$$\frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

C)
$$\frac{[SO_3]}{[SO_2]^2[O_2]}$$

D)
$$\frac{[O_2][SO_2]^2}{[SO_3]^2}$$

Answer Key

- 1. C
- 2. C
- 3. B 4. E
- 5. A
- 6. A
- 7. E 8. A

9. D

- 10. a 11. a
- 12. c

13. A

14. D 15. A

16. E

17. D 18. D

10. D 19. A

20. E

21. D

22. A 23. A

24. E

25. D

26. B 27. A

28. B

29. A

30. C

Use the following to answer question 29:

The following questions refer to the equilibrium shown here: $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

- 29. What would happen to the system if the total pressure were increased by adding Ar(g)?
 - A) Nothing would happen.
 - B) More $CO_2(g)$ would be produced.
 - C) The amount of CaO would increase.
 - D) The amount of CaCO₃ would increase.
 - E) Equilibrium would shift to the right.
- 30. A sample of a substance burns more rapidly in pure oxygen than in air. Which factor is most responsible for this high rate of reaction?
 - A) the properties of the reactants
 - B) temperature
 - C) concentration of the substance
 - D) Surface area exposed to air
 - E) Catalyst